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Abstract

Fully-developed laminar flow in a horizontal thin slit having plates at different temperature is considered for the case of lower plate
movement and/or the pressure gradient-and-upper plate movement. The flow under these conditions is analyzed in terms of entropy gen-
erations as function of the Prandtl number, the Eckert number, cross-flow Reynolds number and dimensionless temperature difference.
In this context, the governing equations for distributions of temperature, the dimensionless entropy generation number and Bejan num-
ber are analytically derived with the aid of expressions for velocity distributions. The effect of each parameter on the temperature and the
entropy generation are investigated by varying one of the parameters and keeping the rest of them constant for each flow case. The effects
of viscous dissipation, rates of mass suction/injection and dimensionless temperature differences on the fluid temperature and entropy
generation are examined. The magnitudes of mass suction and/or injection have a large influence on the temperature profile of the fluid.
It is observed that the Prandtl number and the Eckert number affect fluid temperature in similar way. It is found that an increase in values
of the cross-flow Reynolds number (mass suction/injection) enhances the entropy generation in boundary layer. The velocity profiles are
found to be in agreement with the distributions of the dimensionless entropy generation number (NS) for two flow cases.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Low Reynolds number flow and heat transfer in a por-
ous medium has long been an important subject in the field
of chemical, biochemical, and environmental science.
Along with the advancement of science and technology,
modern instruments and equipment such as micro-elec-
tro-mechanical systems, laser coolant lines and compact
heat exchangers are being used for many purposes. Lami-
nar heating and cooling occur in increasing variety in such
instruments.

There is an increased need for conserving useful energy
and thus, producing thermodynamically efficient heat
transfer processes in which internal forced convection heat
transfer occurs. The foundation of knowledge of entropy
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generation goes back to Clausius and Kelvin’s studies on
the irreversible aspects of the second law of thermodynam-
ics. Fluid flow through porous media is of fundamental
interest and is of great practical importance in many
diverse applications, including the production of oil and
gas from geological structures, the gasification of coal,
the retorting of shale oil, filtration, ground-water move-
ment, regenerative heat exchange, surface catalysis of
chemical reactions, adsorption, coalescence, drying, ion
exchange and chromatography.

As expressed previously, the flow of fluid through por-
ous media and in channels of circular or rectangular
cross-section with the porous walls has long been investi-
gated in many engineering applications. Wang et al. [1] the-
oretically investigated flow distribution and pressure drop
in a channel with a porous wall. An analytical solution of
the non-linear ordinary differential equations, based on
the varying flow coefficients, was obtained. They claimed
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Nomenclature

A constant
B constant
Be Bejan number, 1/(1 + /)
Br Brinkman number, EcPr

CP specific heat, J kg�1 K�1

Ec Eckert number, u2
m=CpDT

k thermal conductivity, W m�1 K�1

vx dimensionless axial velocity, ~vx=um

um axial average velocity, m s�1

~vx axial velocity, m s�1

V transverse direction, m s�1

~x axial direction
~y transverse direction
h transverse direction between plates, m
y dimensionless transverse direction
x dimensionless axial direction
NX entropy generation number, conduction = (oh/

ox)2/Pe2

NF entropy generation number, fluid friction,
Br(ovx/oy)2/X

NS entropy generation number, total

NY entropy generation number, normal to the
axis = (oh/oy)2

p positive integer = 1, 2, 3, . . . ,1
P dimensionless pressure
P0 dimensionless pressure gradient, dP/dx

Pe Peclect number, qCpumh/k
Pr Prandtl number, lCp/k
Re cross-flow Reynolds number, qV h/l
SG entropy generation rate, W m�3 K�1

SG,C characteristic entropy transfer rate
t dimensionless time
T temperature, K
T1 reference temperature, K
T2 reference temperature at the upper plate, K

Greek symbols

h dimensionless temperature
X dimensionless temperature difference, DT/T1

/ irreversibility ratio, NF/(NX + NY)
l dynamic viscosity, Pa s
q density of the fluid, kg m�3
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that the predicted flow distribution agrees well with exper-
imental data. Hayat et al. [2] studied the flow of a third-
order fluid occupying the space over a porous wall. The
suction or blowing velocity was applied at the surface of
the wall. By introducing a velocity field, the governing
equations are reduced to a non-linear partial differential
equation and the resulting equation was analytically solved
by using Lie group methods. Fang [3] undertook an analy-
sis of an unsteady laminar flow of a Newtonian fluid con-
fined in a tube of rectangular cross-section with porous
wall. The steady state temperature distributions were also
presented. It was concluded that the transient velocity
and mass transfer across the fluid have great influence on
the velocity and temperature distributions that affects the
heat transfer behavior at the two plates. In another paper
[4] Fang obtained analytically the unsteady velocity profiles
for a pressure-driven Poiseuille flow in a channel with por-
ous walls under mass transfer. He discussed the influences
of mass transfer on transient velocity and steady state tem-
perature profiles.

Deng and Martinez [5] studied the viscous flow of a
Newtonian fluid in a channel partially filled with a porous
medium and having a porous wall. In the porous medium
the Brinkman–Darcy law relationship was considered. In
order to solve model equations, a similarity variable was
used to reduce the governing equations to two coupled,
non-linear ordinary differential equations.

Ariel [6] obtained the exact analytical solutions of two
problems of laminar flow of a second-order fluid confined
in a tube of rectangular cross-section and annulus with por-
ous walls. For each problem the rate of injection at one
wall is assumed to equal to the rate of suction at the other
wall. It was reported that the viscoelasticity of the fluid
tends to destroy the formation of the boundary layer at
the wall where the suction takes place for large values of
the cross-flow Reynolds number.

Zaturska and Banks [7] analyzed the flow of a Newto-
nian fluid in a tube of rectangular cross-section. They
reported that an exact solution of the simplified Navier–
Stokes equation for the certain conditions decays with
increasing time if the Reynolds number is less than a criti-
cal value and grows without limit if Reynolds number is
larger than that critical value.

Ogulu and Amos [8] worked on the problem of suction/
injection on free convective flow of a non-Newtonian fluid
past a vertical porous plate. The non-linear partial differen-
tial equations are decoupled. Expressions for temperature,
velocity, skin-friction and rate of heat transfer were
obtained at very slow motion of incompressible fluid. They
observed that the velocity distribution is highly dependent
on the viscoelastic parameter and the rate of heat transfer
does not depend on the free convective parameter.

Bejan [9] performed an analytical study to show entropy
generation in fundamental convective heat transfer prob-
lems such as pipe flow, boundary layer over flat plate, sin-
gle cylinder in cross-flow, flow in the entrance region of a
flat rectangular duct. He demonstrated that how the flow
geometric parameters may be selected in order to minimize
the irreversibility associated with a specific convective heat
transfer process. Nag and Mukherjee [10] investigated the
thermodynamic optimization for convective heat transfer
through a duct with constant wall temperature. They indi-
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Fig. 1. Schematic diagram of entropy generation analysis for an infini-
tesimal fluid element dx � dy in two large parallel porous plates.
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cated that initial temperature difference between the fluid
and the wall is an important design criterion and there is
an optimum ratio of the heat transfer to pumping power
ratio. Entropy generation in a vertical concentric channel
was studied analytically by Tasnim and Mahmud [11].
They took into account temperature dependent viscosity
for laminar flow. Finally, they derived analytical expres-
sions for the velocity and temperature to obtain expres-
sions for local and average entropy generation for that
geometry. Similarly, entropy generation with variable vis-
cosity was analyzed by Sahin [12] for laminar duct flow.
The shape of the duct on entropy generation was also stud-
ied by Sahin [13]. He compared the circular, square, trian-
gular, rectangular and sinusoidal cross-sectional duct from
the entropy generation point of view. Recently, Mahmud
and Fraser [14] investigated the entropy generation for
laminar flow of a Newtonian fluid confined in different
geometries. In another paper [15] Mahmud and Fraser
worked on the second law analysis of fluid flow and heat
transfer inside a circular duct under fully developed forced
convection for non-Newtonian fluids. The governing equa-
tions were solved numerically in order to obtain Nusselt
number for some selected fluid indices. Naphon [16] theo-
retically and experimentally studied the second law analysis
of the heat transfer and flow in a horizontal concentric tube
heat exchanger. He developed the mathematical model
based on the conservation equations of energy and solved
this equation numerically by the central finite difference
method to obtain temperature distributions, entropy gener-
ation, and exergy loss. It was reported that there is reason-
able agreement between predicted results and measured
data. On the other hand, Guo et al. [17] performed theoret-
ical analysis and experimental confirmation for the princi-
ple to improve thermal performance of heat exchangers.
The uniformity of the temperature difference field (TDF)
and effectiveness of various types of heat exchangers were
studied analytically and numerically. It was reported that
the analysis of entropy generation caused by the heat trans-
fer indicates that the uniformity principle of TDF satisfies
the second law of thermodynamics. It was also observed
that the experimental results governed by the uniformity
principle of TDF show that the effectiveness increases with
the increase of the uniformity of TDF.

Since conserving useful energy and thus, producing ther-
modynamically efficient heat transfer processes are quite
important in energy saving, reducing the process irrevers-
ibility is the most common desire in many engineering
implications. In this context, many convective heat transfer
processes have been analyzed in terms of entropy genera-
tions as mentioned earlier. To the author’s knowledge;
however, to date none of the previous studies has dealt
with the second law analysis of an incompressible fluid that
is disturbed by either mass suction or injection, for flow in
a thin slit having porous walls at different temperature.
Therefore, the main purpose in the present study is to ana-
lyze the entropy generation due to heat conduction in the
transverse direction and the viscous dissipation for (1) the
lower plate movement and (2) the pressure gradient-and-
upper plate movement. In this context, the governing equa-
tions for velocities of plate movement-driven flow and pres-
sure-and-plate movement-driven flow are used to obtain
analytical expressions for the fluid temperature and thus
the entropy generation distributions as functions of the
Prandtl number, the Eckert number and the dimensionless
temperature difference for the cases of mass injection and
suction at the bottom plate.

2. The derivation of basic equations and theoretical analysis

Consider an incompressible fluid flowing in x-direction
in a horizontal slit (two parallel plates) with porous walls
at different temperatures, with mass injection through one
plate and the same amount of mass suction through other
(see Fig. 1). Two flow problems are considered namely (1)
the lower plate undergoes a sudden acceleration with a con-
stant velocity of um and (2) an imposed pressure drop and
the upper plate movement that undergoes a sudden acceler-
ation to a constant velocity of um.

At unsteady state the governing equations for velocity of
a power-law fluid for both cases were obtained by taking
n = 1 in the power-law fluid model at various values of
Reynolds number to examine the effect of mass suction/
injection on velocity profiles. The effect of mass suction/
injection, the power-law index and the time on the velocity
profiles were examined in elsewhere [18,19]. Therefore, the
derivations of the velocity profiles for both cases are not
repeated here. However, the governing equations for heat
transfer at steady state will be given in order to obtain tem-
perature profiles and thus entropy generation profiles as
functions of the Prandtl number, the Eckert number and
the dimensionless temperature difference for the cases of
mass suction or injection.

While in the previous papers [18,19] the unsteady state
flows in a slit with porous plates were analyzed as functions
of time and cross-flow rates at the bottom plate for two dif-
ferent flow cases. Here, the equations for temperature and
entropy distributions of the flow in a thin horizontal slit are
analytically derived with the aid of the previously devel-
oped velocity equations in order to perform the second
law analysis for the problem at hand. In the present paper,
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a Newtonian fluid flow disturbed by cross-flow at the bot-
tom plate the entropy generation due to irreversibility of
process is examined in the thin horizontal slit whose walls
are at different temperatures.

The focus is on the development of heat transfer equa-
tion, with the aid of the developed velocity distribution
for the flow cases. The resulting expression will be used
for numerically computing temperature and entropy gener-
ation distributions as a function of the Prandtl number, the
Eckert number and the dimensionless temperature differ-
ence for the cases of mass suction/injection.

It is desirable to analyze the system in terms of distribu-
tions of velocity, momentum flux, temperature and entropy
generation at a constant wall heat flux or a constant wall
temperature.

At unsteady state the velocities for the lower plate move-
ment-driven flow [18] and the pressure-and-upper plate
movement-driven flow [19] were given by following equa-
tions, respectively:

vxðt; yÞ ¼
expðReyÞ � expðReÞ

1� expðReÞ � 2p expð�Re2t=4Þ expðRey=2Þ

�
X1
p¼1

p sinðppyÞ
p2p2 þ Re2=4

expð�p2p2tÞ ð1aÞ

The above equation is obtained subject to boundary condi-
tions:
vxðt; 0Þ ¼ 1; vxðt; 1Þ ¼ 0 and vxð0; yÞ ¼ 0

vxðt; yÞ ¼ �
P 0

Re
y þ ðP 0 þ ReÞ

Re
1� expðReyÞ
1� expðReÞ

� �
þ expð�Re2t=4Þ

�
X1
p¼1

sinðppyÞ
p2p2 þ Re2=4

� expð�p2p2tÞ sinðppyÞ �P 0y � 2P 0ðRe2=4� ðppÞ2Þ
ReðRe2=4þ ðppÞ2Þ

þ ðP 0 þ ReÞ 1þ expðReyÞ
1� expðReÞ

� �" #(

þðppÞ cosðppyÞ � 2P 0

Re
y � P 0

ðRe2=4þ ðppÞ2Þ

"
þ 2ðP 0 þ ReÞ

Re
1� expðReyÞ
1� expðReÞ

� �#)
ð1bÞ
The above equation is also derived subject to boundary
conditions:

vxðt; 0Þ ¼ 0; vxðt; 1Þ ¼ 1 and vxð0; yÞ ¼ 0

where Re is the cross-flow Reynolds number, P0 the dimen-
sionless pressure gradient in the axial direction, vx(t,y) the
unsteady state dimensionless velocity in the axial direction
and the dimensionless variables appeared in the above
equations are given as follows (for details see [19]):

x ¼ ~x=‘; vx ¼ ~vx=um; t ¼ ~t=ðh2q=lÞ; P ¼ ~P=ðlum=‘Þ
where ‘ is the axial distance. The dimensionless transient
velocity profiles as a function of the dimensionless trans-
verse distance are obtained by use of Eq. (1b) and graphi-
cally illustrated in Fig. 2 at certain values of Reynolds
number and dimensionless time for various values of
dimensionless pressure gradient. The dimensionless time
taken to be 0.14 in present computation is large enough
for the dimensionless transient velocity to be considered
like steady state velocity (see [19]).

It is difficult to solve exactly the transient energy equa-
tions with viscous dissipation by using these transient
velocity expressions. Since the flow will be developed after
a certain time, it is of practical use to solve the steady state
energy equation. Therefore, in the above equations the
steady state parts of the velocity will be taken for evaluat-
ing viscous dissipation in the development of the steady
state energy equation for each flow case.

The steady state velocity for the lower plate movement-
driven flow and the pressure-and-upper plate movement-
driven flow are respectively given as follow:

vxðyÞ ¼
expðReÞ � expðReyÞ

expðReÞ � 1
ð2aÞ

vxðyÞ ¼ �
P 0

Re
y þ ðP 0 þ ReÞ

Re
expðReyÞ � 1

expðReÞ � 1

� �
ð2bÞ

As stated previously the incompressible viscous fluid with
constant physical properties of q, l, k, Cp is flowing in
the laminar flow regime in a slit of height h. For x > 0 there
are constant wall temperatures specifically T1 and T2 for
the bottom plate and the upper plate respectively. The
dimensionless velocity distributions, at least far enough
downstream from the inlet so that the entrance length
has been exceeded, can be computed from the equations
just given above.

In order to obtain the temperature distribution, the fol-
lowing partial differential equation has to be solved with
the appropriate boundary conditions.

qCpum
oT
o~y
¼ k

o
2T

o~y2

� �
þ l

o~vx

o~y

� �2

ð3Þ

where um is the velocity of mass either injection or suction
(cross-flow velocity) at the bottom plate. In order to obtain
the above equation in the dimensionless form, the dimen-
sionless variables are defined as follows:

vx ¼ ~vx=um; y ¼ ~y=h and h ¼ ðT � T 1Þ=ðT 2 � T 1Þ

By utilizing the above dimensionless variables the energy
equation is rewritten in dimensionless form as follows:
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number.
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o2h
oy2
� RePr

oh
oy
¼ �EcPr

ovx

oy

� �2

ð4Þ

In order to obtain temperature profiles for each flow case,
the above equation has to be solved subject to the bound-
ary conditions:

h ¼ 0 at y ¼ 0 and h ¼ 1 at y ¼ 1 ð5Þ

where h is the dimensionless temperature defined above.
After the fluid is far downstream from the beginning of
the entrance, one expects intuitively that the constant wall
temperature will result in the constant fluid temperature in
the axial direction. One further expects that the shape of
the transverse temperature profiles will ultimately not un-
dergo further change with increasing x.

Substituting the derivative of Eq. (2a) with respect to y

into Eq. (4) gives the following equation:

o2h
oy2
� RePr

oh
oy
¼ �EcPr

Re2e2Rey

ðeRe � 1Þ2
ð6Þ

The governing equation (6) for the temperature distribu-
tion of the lower plate movement-driven flow can be easily
solved subject to boundary condition given by Eq. (5) and
the solution of this equation is given by

h ¼ eRePry � 1

eRePr � 1
þ eRePry � 1

eRePr � 1

EcPrðe2Re � 1Þ
2ð2� PrÞðeRe � 1Þ2

" #

� EcPrðe2Rey � 1Þ
2ð2� PrÞðeRe � 1Þ2

ð7Þ

It is obvious that the first terms in Eq. (7) is the solution of
energy equation when viscous dissipation term is ignored in
Eq. (4), and the second and third terms result from viscous
dissipation of the fluid by the lower plate movement. As
can be seen from Eq. (7) the temperature distribution is lin-
early dependent on the Eckert number. It is seen that when
either Re = 0 or Pr = 2 in Eq. (7), the dimensionless tem-
perature goes to infinity, an unrealistic value. As Re = 0,
the problem becomes the well-known Couette flow and
the temperature distribution was given in [22]. On the other
hand, the solution of energy equation, valid for Pr = 2, has
to be determined for the lower plat movement-driven flow.
The solution is given as follows:

h ¼ e2Rey � 1

e2Re � 1
þ e2Rey � 1

e2Re � 1

EcRee2Re

2ðeRe � 1Þ2

" #
� EcRe

2ðeRe � 1Þ2
ye2Rey

ð8Þ
As stated earlier, it was assumed that the flow is laminar

and fully developed. Therefore, the boundary layers are no
longer growing thicker and it is expected that h0 (the mean
heat transfer coefficient) on the plates will become constant
and thus the temperature profiles will retain the same shape
along the axial direction.

Substituting the derivative of Eq. (2b) with respect to y

into Eq. (4) gives the following equation:

o
2h

oy2
� RePr

oh
oy
¼ �EcPr

ðReþ P 0Þ2e2Rey

ðeRe � 1Þ2
� 2

ðReþ P 0Þ
ReðeRe � 1Þ e

Rey

 

þ P 0

Re

� �2
!

ð9Þ

where P0 = dP/dx is the dimensionless pressure gradient in
the axial direction. The governing equation (9) for the
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temperature distribution of the pressure-and-upper plate
movement-driven flow can be analytically solved and its
general solution is given by

h ¼ Aþ BeRePry þ EcPrP 2
0

PrRe3
y þ 2EcPrðP 0 þ ReÞP 0

Re3ð1� PrÞðeRe � 1Þ
eRey

� EcPrðP 0 þ ReÞ2

2Re2ð1� PrÞðeRe � 1Þ2
e2Rey ð10Þ

In the above equation A and B are the integration con-
stants that are determined by applying boundary condi-
tions given by Eq. (5) as follows:

A ¼ � 1

ðePrRe � 1Þ

"
1� 2EcPrP 0ðP 0 þ ReÞ

Re3ð1� PrÞ

þEcPrðP 0 þ ReÞ2ðe2Re � 1Þ
2Re2ð2� PrÞðeRe � 1Þ2

� EcPrP 2
0

PrRe3

#

� 2EcPrP 0ðP 0 þ ReÞ
Re3ð1� PrÞðeRe � 1Þ

þ EcPrðP 0 þ ReÞ2

2Re2ð2� PrÞðeRe � 1Þ2

B ¼ 1

ðePrRe � 1Þ

"
1� 2EcPrP 0ðP 0 þ ReÞ

Re3ð1� PrÞ

þEcPrðP 0 þ ReÞ2ðe2Re � 1Þ
2Re2ð2� PrÞðeRe � 1Þ2

� EcPrP 2
0

PrRe3

#

Substituting the integration constants (A and B) into Eq.
(10) results in the solution of energy equation for the pres-
sure-and-upper plate movement-driven flow in the follow-
ing form:

h ¼ eRePry � 1

ðePrRe � 1Þ þ
EcPr

Re2

eRePry � 1

ðePrRe � 1Þ

�

� � 2P 0ðP 0 þ ReÞ
Reð1� PrÞ þ

ðP 0 þ ReÞ2ðe2Re � 1Þ
2ð2� PrÞðeRe � 1Þ2

� P 2
0

PrRe

" #

þ P 2
0

PrRe
y þ 2ðP 0 þ ReÞP 0ðeRey � 1Þ

Reð1� PrÞðeRe � 1Þ �
ðP 0 þ ReÞ2ðe2Rey � 1Þ
2ð2� PrÞðeRe � 1Þ2

)

ð11Þ
It is seen that the first terms in Eq. (11) is the solution of the
energy equation when viscous dissipation is negligible and
the second term results from viscous dissipation. As can be
seen from Eq. (11) the temperature distribution is linearly
dependent on the Eckert number. Furthermore, it is seen
that as Pr = 1 and Pr = 2, the dimensionless temperature
goes to infinity and this is not a realistic situation. For
Re = 0 the solution of energy equation is also not valid
from the same reason. Hence the solution of energy equa-
tion which is valid for Pr = 1 and Pr = 2 has to be obtained
for the case of pressure-and-plate movement-driven flow.
The general solution of energy equation valid for Pr = 1
can be obtained as follows:

h ¼ Aþ BeRey þ EcP 2
0

Re3
y þ 2EcðP 0 þ ReÞP 0

Re2ðeRe � 1Þ
yeRey

� EcðP 0 þ ReÞ2

2Re2ðeRe � 1Þ2
e2Rey ð12Þ
where A and B are the integration constants that are deter-
mined subject to boundary conditions given by Eq. (5) as
follows:

A ¼ � 1

ðeRe � 1Þ 1� 2EcP 0ðP 0 þ ReÞeRe

Re2ðeRe � 1Þ
þ EcðP 0 þ ReÞ2ðe2Re � 1Þ

2Re2ðeRe � 1Þ2

"

�EcP 2
0

Re3

#
þ EcðP 0 þ ReÞ2

2Re2ðeRe � 1Þ2

B ¼ 1

ðeRe � 1Þ 1� 2EcP 0ðP 0 þ ReÞeRe

Re2ðeRe � 1Þ

�

þEcðP 0 þ ReÞ2ðe2Re � 1Þ
2Re2ðeRe � 1Þ2

� EcP 2
0

Re3

#

The solution of energy equation valid for Pr = 1 is ob-
tained by substituting the integration constants into Eq.
(12) as follows:

h ¼ eRey � 1

ðeRe � 1Þ þ
Ec

Re2

(
eRey � 1

ðeRe � 1Þ

"
� 2P 0ðP 0 þ ReÞeRe

ðeRe � 1Þ

þ ðP 0 þ ReÞ2ðe2Re � 1Þ
2ðeRe � 1Þ2

� P 2
0

PrRe

#
þ P 2

0

Re
y

þ 2P 0ðP 0 þ ReÞ
ðeRe � 1Þ yeRey � ðP 0 þ ReÞ2ðe2Rey � 1Þ

2ðeRe � 1Þ2

)
ð13Þ

Similarly, for the pressure-and-plate movement-driven
flow, the general solution of energy equation valid for
Pr = 2 is found to be as follows:

h ¼ Aþ Be2Rey þ EcP 2
0

Re3
y � 4EcðP 0 þ ReÞP 0

Re3ðeRe � 1Þ
eRey

� EcðP 0 þ ReÞ2

ReðeRe � 1Þ2
ye2Rey ð14Þ

By applying the boundary conditions Eq. (5) the integra-
tion constants are determined to be

A ¼ � 1

ðe2Re � 1Þ 1þ 4EcP 0ðP 0 þ ReÞ
Re3

þ EcðP 0 þ ReÞ2e2Re

ReðeRe � 1Þ2

"

�EcP 2
0

Re3

�
þ 4EcP 0ðP 0 þ ReÞ

Re3ðeRe � 1Þ

B ¼ 1

ðe2Re � 1Þ 1þ 4EcP 0ðP 0 þ ReÞ
Re3

þ EcðP 0 þ ReÞ2e2Re

ReðeRe � 1Þ2
� EcP 2

0

Re3

" #

Combining Eq. (14) with the determined integration con-
stants yields

h ¼ e2Rey � 1

ðe2Re � 1Þ þ
Ec
Re

(
e2Rey � 1

ðe2Re � 1Þ

"
4P 0ðP 0 þ ReÞ

Re2

þðP 0 þ ReÞ2e2Re

ðeRe � 1Þ2
� P 2

0

Re2

#
þ P 2

0

Re2
y � 4P 0ðP 0 þ ReÞðeRey � 1Þ

Re2ðeRe � 1Þ

� ðP 0 þ ReÞ2

ðeRe � 1Þ2
ye2Rey

)
ð15Þ
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Eq. (7) for Pr 6¼ 2 and Eq. (8) for Pr = 2 will be used for
evaluating the dimensionless temperature distributions for
the case of the lower plate movement-driven flow in the
two large parallel plates whose walls are porous and at dif-
ferent temperatures. Eq. (11) for Pr 6¼ 1 and Pr 6¼ 2 and
Eq. (13) for Pr = 1 and Eq. (15) Pr = 2 will be used for
evaluating the dimensionless temperature distributions for
the case of the pressure-and-plate movement-driven flow
in the two large parallel plates with porous walls that are
at different values of temperatures.

After obtaining the temperature distributions for these
cases, one can analyze irreversibility of the process by
applying the second law of thermodynamics. The total
entropy generation includes contributions due to heat con-
duction in both the transverse direction and viscous dissi-
pation resulting from fluid friction. In other words, heat
transfer processes are generally accompanied by thermody-
namic irreversibility or entropy generation. The generation
of entropy may be due to a variety sources, primarily heat
transfer down temperature gradients, characteristic of con-
vective heat transfer and viscous dissipation.

3. Entropy generation in an incompressible fluid confined in a

slit

Consider an incompressible fluid is flowing in the x-
direction in a horizontal thin slit whose walls are porous
and at different temperature. It is assumed that laminar vis-
cous flow through a thin slit subjected to constant wall
temperature takes place for fluid possessing constant phys-
ical properties (q,l,k,CP). Thus, entropy generation is
unavoidable due to conduction heat transfer through the
fluid and viscous dissipation. If we consider a two-dimen-
sional infinitesimal fluid element and consider the element
as an open thermodynamic system subjected to mass fluxes,
energy transfer and entropy transfer interactions through a
fixed control surface, the volumetric rate of entropy gener-
ation for incompressible Newtonian fluid in Cartesian
coordinates is given as follows [20]:

SG ¼
k

T 2

oT
o~x

� �2

þ oT
o~y

� �2
" #

þ l
T

o~vx

o~y

� �2
" #

ð16Þ

The above Eq. (16) indicates that the irreversibility or en-
tropy generation results from the heat conduction in both
transverse and axial directions and viscous dissipation.

The dimensionless entropy generation rate called the
local entropy generation number [9] is obtained by divid-
ing the total entropy generation rate equation (16) with
the characteristic entropy transfer rate (SG,C) that is
defined as

SG;C ¼
kðDT Þ2

h2T 2
1

" #
ð17Þ

In the above equation, DT is the difference of temperatures
between two plates (T2–T1), T1 is the absolute reference
temperature and h is the characteristic length that depends
on geometry and type of problem. Here it is equal to the
transverse distance between two large plates. The dimen-
sionless entropy generation rate that is obtained by divid-
ing the dimensionless form of Eq. (16) with Eq. (17) is
given as follows (see [9]):

NS ¼
1

Pe2

oh
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� �2
" #

ð18Þ

Pe ¼ qCpumh=k;X ¼ DT=T 1 and Br ¼ Pr � Ec

¼ lu2
m=ðkDT Þ

where Pe is the Peclet number, Br is the Brinkman number
and X is the dimensionless temperature difference.

Eq. (18) can be expressed alternatively as follows:

NS ¼ N X þ N Y þ N F ð19Þ

On the right hand side of Eq. (19) the first term (NX) de-
notes the entropy generation by heat transfer due to the ax-
ial conduction, the second term (NY) accounts for the
entropy generation by heat transfer due to the transverse
conduction and the last term (NF) represents the entropy
generation due to viscous dissipation.

As mentioned earlier it was assumed that the flow is
laminar and fully developed in the x-direction which
requires that one-dimensional flow occurs in the axial
direction and a temperature gradient in the transverse
direction; therefore, Eq. (18) can be reduced to the follow-
ing equation:

NS ¼
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þ Br
X

ovx

oy

� �2
" #

ð20Þ

For Pr 6¼ 2 the entropy generation number for the lower
plate movement case is given by

NS ¼
PrReeRePry

ðeRePr � 1Þ 1þ EcPrðe2Re � 1Þ
2ð2� PrÞðeRe � 1Þ2

" #(
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e2Rey ð21Þ

and the similar equation for Pr = 2 is obtained as follows:

NS ¼
2Ree2Rey
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Eqs. (21) and (22) are obtained by substituting the deriva-
tives of Eqs. (2a), (7) and (8) with respect to y into Eq. (18).

Similarly, for Pr 6¼ 1 and Pr 6¼ 2 the entropy generation
number for the pressure gradient and plate movement case
is given by
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One obtains Eq. (23) by substituting the derivatives of Eqs.
(2b) and (11) with respect to y into Eq. (20). The entropy
generation equations valid for Pr = 1 and Pr = 2 are de-
rived by inserting the derivatives of Eqs. (2b), (13) and
(15) with respect to y into Eq. (20) and resulting equations
for the pressure-and-plate movement-driven flow are given
as follows: For Pr = 1
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For Pr = 2
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The equations obtained for entropy generation for both
flow cases, namely the plate movement-driven flow and
pressure-and-plate movement-driven flow, will be used for
determining entropy generation profiles as functions of
cross-flow Reynolds number, the Prandtl number, the Eck-
ert number and the dimensionless temperature difference.

4. Results and discussion

The convective heat transfer processes are analyzed by
the second law of thermodynamics namely entropy genera-
tion due to irreversibility of the processes. As stated earlier,
there exists a direct proportionality between irreversibility,
quantified in the entropy generated, and the amount of use-
ful and available work lost in the process. In convective
heat transfer both fluid frictions and heat transfer make
contributions to the rate of entropy generation.

Although it is desirable to consider the Ec and Pr in a
group that is called the Brinkman number (Br = Ec � Pr)
for evaluating the relative importance of the energy due
to viscous dissipation to the energy because of heat conduc-
tion, in the present study the Brinkman number is not used
for evaluating the obtained results since the Ec and Pr do
not always appear together in the derived equations. It
was reported that Br is much less than unity for many engi-
neering processes [9]. The irreversibility distribution ratio is
defined as the ratio of entropy generation due to fluid fric-
tions (NF) to heat transfer (NX + NY). In other words, it is
equal to the ratio of Brinkman number to the dimension-
less temperature difference (Br/X). The irreversibility distri-
bution ratio denoted by / can be interpreted as; the case of
0 6 / < 1 indicates that heat transfer irreversibility domi-
nates over fluid friction irreversibility and the fluid friction
dominates over heat transfer irreversibility when / > 1.
For the case of / = 1, both the heat transfer and fluid fric-
tion have the same contribution for entropy generation. An
alternative irreversibility distribution parameter was
defined by Paoletti et al. [21] as ratio of entropy generation
due heat transfer to the total entropy generation that is
called Bejan number given by

Be ¼ NX þ NY

NS

¼ 1

1þ /
ð26Þ

The above equation can be interpreted according to values
of / as described above. Hence, the range of Bejan number
is between 0 and 1. The value of Be = 1 indicates that the
heat transfer irreversibility dominates over fluid friction,
which corresponds to the case of / = 0. On the other hand,
a value of Be equal to zero indicates that the fluid friction
irreversibility dominates over the irreversibility because of
the heat transfer, which corresponds the limit of / ?1.
The case of Be = 1/2 shows that the entropy generation
due to heat transfer and fluid friction irreversibility are
equal to one another, and corresponds to the case of /
= 1. By substituting the derivative of Eqs. (7) and (21) into
Eq. (26), Bejan number for Pr 6¼ 2 can be obtained for the
lower plate movement-driven fluid flow as follows:
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Be¼
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Similarly, Be number for the pressure-and-upper plate
movement-driven flow can be obtained as in Eq. (28) by
substituting the derivative of Eqs. (11) and (23) into Eq.
(26) for Pr 6¼ 1 and Pr 6¼ 2.

Be numbers for Pr = 1 and Pr = 2 can be also easily
obtained in the same manner for the pressure-and-upper
plate movement-driven flow; however, they will not be
obtained in the present investigation. Bejan number for
each flow case can be numerically computed as functions
of the Prandtl number, the Reynolds number, the Eckert
number and the dimensionless temperature difference from
Eqs. (27) and (28) by using the specific numerical values
other than 1.0 and 2.0 for Pr. Similarly, the entropy gener-
ation number as functions of Pr, Re, Ec and X for each
flow case can be numerically computed from Eq. (21) for
the plate movement-driven flow at values of Pr 6¼ 2 and
from Eq. (23) for the pressure-and-plate movement-driven
flow at values of Pr 6¼ 1 and Pr 6¼ 2.

The dimensionless steady state temperature profiles as a
function of Prandtl number at different values of Reynolds
number (Re = �3.0 and Re = 3.0) for Ec = 0 are depicted
in Fig. 3 for a fluid subjected to lower plate movement
and in Fig. 3 for a fluid subjected to a pressure drop and
the upper plate movement. As can be seen from the figures
the temperature profiles approach the plates with increas-
ing the Prandtl number for two flow cases. While the tem-
perature profiles become close to the lower plate for the
case of mass suction, those become close to the upper plate
for the case of transverse mass injection from the bottom
wall. The figures indicate that the plates will be close to adi-
abatic wall with increasing Prandtl numbers. In other
words, the plates will be close to adiabatic with increasing
molecular diffusivity of momentum relative to molecular
diffusivity of heat since Prandtl number measures the rela-
tive importance of momentum diffusivity to heat diffusivity.
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As stated previously the first terms in Eqs. (7), (8), (11),
(13) and (15) are the solutions of energy equations valid for
specific values of Prandtl number when the viscous dissipa-
tion term is negligible. Therefore, the solution of energy
equation is arranged such that the taking Eckert number
equal to zero means neglecting the viscous dissipation term
in the solution of energy equation. It is seen that, if the vis-
cous dissipation term is ignored in the energy equation, the
temperature profile for the same magnitude of mass suc-
tion/injection will be symmetric in a Newtonian fluid
between two large plates. As a result, the symmetric tem-
perature profiles are obtained for both flow problems
namely the plate movement-driven flow and the pressure-
and-plate movement-driven flow in a thin slit when the
viscous dissipation term is neglected. It is seen from com-
parison of Fig. 3 with Fig. 4 that the temperature profiles
for the pressure-and-plate movement-driven flow become
much closer to the lower plate than that for the plate move-
ment-driven flow with increasing the mass suction at the
bottom plate and enhances heat transfer at this plate. On
the other hand, for the case of mass injection from bottom
plate the pressure-and-plate movement-driven flow will
reduce heat transfer at the bottom wall and enhance heat
transfer at the upper one more than the plate movement-
driven flow. As can be seen from Figs. 3 and 4 temperature
profiles become much closer to the lower and upper plates
for the pressure-and-plate movement-driven flow than that
for the plate movement-driven flow alone. The velocity
profiles for two flow cases also move toward either the
upper plate or the lower plate depending on whether mass
is injected or sucked at the bottom plate. Since the temper-
ature profiles will be much closer to the plates with increas-
ing the transverse mass suction/injection, it is expected that
for very large mass injection/suction the plate will be close
to adiabatic wall. However, when the Eckert number is not
negligible, the viscous dissipation term in the solution of
energy equation will make considerable contribution to
heat generation in the fluid and thus, the temperature pro-
files will be different from those shown in Figs. 3 and 4. As
mentioned previously, in order to take into account the vis-
cous dissipation term in the energy equation the Eckert
number will be non-zero. Therefore, the influence of the
viscous dissipation on the temperature profile can be exam-
ined by varying values of the Eckert number. The effect of
Eckert number on the temperature profile is illustrated in
Figs. 3 and 4 at constant values of Prandtl number
(Pr = 1.0) and dimensionless temperature difference
(X = 1.0) for the cases of mass suction (Re = �3.0) and
injection (Re = 3.0). As can be seen from the figures the
fluid temperature increase to be higher than that of plate
with increasing the Eckert number for the both fluid flow
cases. Since there is a linear relationship between the
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irreversibility distribution ratio and the Eckert number, an
increase in the Eckert number will result in the same
amount of increase in the irreversibility distribution ratio
at constant values of Prandtl number and dimensionless
temperature difference. Therefore, the irreversibility
increases with increasing the Eckert number, which results
in increasing fluid temperature due to heat generation
because of fluid friction.

It is also seen that the temperature profile of the fluid as
a function of the Eckert number for mass suction and injec-
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tion are substantially different from one another at the
same magnitude of the other effective parameters. As stated
previously the magnitudes of mass suction and injection
has a large influence on the temperature profile of the fluid.
Fig. 5 shows that while the fluid temperature is lower than
the upper plate temperature for mass injection/suction
cases at value of Ec = 1.0, the fluid temperature increases
0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Ec = 1.0
Ec = 3.0
Ec = 5.0
Ec = 7.0

Re = -3.

Re = 3.0 

Pr = 1.0 

Fig. 5. Temperature variations with the Eckert n

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Fig. 6. Temperature variations with the Eckert number
to be higher than the upper plate temperature with increas-
ing Eckert number due to viscous dissipation. On the other
hand, Fig. 6 indicates that the fluid temperature is lower
than the upper plate temperature for mass injection and
slightly higher than that for mass suction at the value of
Ec = 1.0 for constant values of the dimensionless pressure
drop (P0 = �0.5), the dimensionless temperature difference
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(X = 1.0) and Prandtl number (Pr = 3.0). It is also
observed that the fluid temperature profiles for the pres-
sure-and-plate movement-driven flow are affected by the
Eckert number more than that for the plate movement-dri-
ven flow for both mass suction and injection cases (com-
pare Figs. 5 and 6 with one another). Furthermore, the
fluid temperature for the pressure-and-plate movement-dri-
ven flow increases more rapidly than that for the plate
movement fluid with increasing the Eckert number and
there is a maximum increase in the fluid temperature at
each values of the Eckert number for both flow cases and
for both the transverse mass transfer cases (mass suction
and injection) at constant values of Pr, X, and P0. It is also
observed from the figure that the magnitudes of the fluid
temperature for the mass suction case is larger than that
of the fluid temperature for the mass injection case.
Although the trend observed for the fluid temperature pro-
files in the pressure-and-plate movement-driven flow is sim-
ilar to those in the plate movement-driven flow, their
magnitudes are quite different. In other words, the magni-
tudes of the fluid temperature for the pressure-and-plate
movement-driven flow are larger than those of the fluid
temperature for the plate movement-driven flow. Thus, it
can be said that the viscous dissipation effect on the fluid
temperature for the pressure-and-plate movement-driven
flow is more pronounced than that for the plate move-
ment-driven flow. Eqs. (7), (8), (11), (13) and (15) are the
solutions of energy equations which were obtained for cer-
tain values of Prandtl numbers. The second and third terms
on the right hand side of these equations come from the
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Fig. 7. Effect of the Prandtl number on the entropy
viscous dissipation. As can be seen Ec number in those
equations lies as a multiplier of viscous dissipation terms.
Therefore, an increase in Ec number will directly reflect
to the increase in dimensionless temperature of the fluid
as pointed out in Figs. 5 and 6. As can be seen in Fig. 6
when Ec number increases to be 7.0, the dimensionless tem-
perature of the fluid becomes much higher than that of the
upper plate especially for the pressure-and-plate move-
ment-driven fluid flow. The large amount of increase in
the dimensionless temperature may arise a question that
whether the chosen values of the dimensionless quantities
violate the accepted assumptions such as laminar flow
and incompressibility. Unfortunately we do not have
experimental data for the chosen values of the dimension-
less quantities to evaluate system for deciding whether vio-
lation takes place or not. Although it is not shown here, the
effect of the Prandtl number at the constant values of the
Eckert number, the dimensionless temperature difference
and the pressure drop are examined for the both flow cases
at varying values of Reynolds number (Re = �3.0 and
Re = 3.0). It is observed that the fluid temperature
increases to be higher than that of plate temperature with
increasing Prandtl number larger than 1. This trend is
observed for both flow cases; however, as mentioned previ-
ously the magnitudes of the fluid temperature for the pres-
sure-and-plate movement-driven flow are more
pronounced than that for the plate movement-driven fluid
flow. The value of the maximum fluid temperature occur-
ring close to the lower plate for the mass suction is much
higher than that occurring close to the upper plate for
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generation for the plate movement-driven flow.
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the mass injection at the bottom plate. Therefore, it can be
concluded that the mass suction influence on the fluid tem-
perature is more effective than mass injection.

Note that Prandtl number and Eckert number affect the
fluid temperature in a similar way. As expressed earlier Pr,
Ec and X can be written altogether to give a group called as
irreversibility distribution ratio (/ = PrEc/X); however, in
the present study the effect of only / instead of Pr and Ec

on the fluid temperature and entropy distributions is not
examined since these parameters usually do not appear
together in the solution of energy equations for both flow
cases.

The dimensionless entropy generation number (NS) as a
function of Prandtl number at Ec = 3.0 and X = 1.0 for the
plate movement-driven flow and the pressure-and-plate
movement-driven flow is, respectively, shown in Figs. 7
and 8 for varying values of Reynolds number (mass suc-
tion/injection). As can be seen from Fig. 7 the maximum
entropy generation takes place at the lower plate for the
mass suction and at the upper plate for the mass injection.
While Fig. 7 is drawn for the plate movement-driven fluid
flow, Fig. 8 is depicted for the pressure-and-plate move-
ment-driven fluid flow. Although magnitude of the dimen-
sionless entropy generation is different from one another
for both flow cases, the trend observed for the entropy gen-
eration in the plate movement-driven fluid flow is similar to
that in the pressure-and-plate movement-driven fluid flow.
For the plate movement-driven fluid flow the entropy gen-
eration takes a value of around 500 on the bottom plate
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Fig. 8. Effect of the Prandtl number on the entropy genera
while for the pressure-and-plate movement-driven flow it
takes a value of 680 on the bottom plate at the same mag-
nitudes of Pr, Ec, X and Re. As can be seen from both fig-
ures entropy generations on the plates increase with
increasing Prandtl number. Therefore, it can be said that
molecular diffusivity of momentum become more impor-
tant than that of heat at, or near, the plates. Although it
is not clearly seen from Fig. 7 there is a lowest value for
entropy generation in the fluid flowing between two large
plates. The location in which the lowest entropy generation
occurs is significantly dependent on either the mass suction
or the mass injection and slightly dependent on the Prandtl
number. For the pressure-and-plate movement-driven flow,
while the lowest entropy generation occurs at a value of
y = 0.38 for the case of the mass suction, that takes place
at a value of y = 0.68 for the case of mass injection at con-
stant values of the pressure drop (P0 = �0.50), the dimen-
sionless temperature difference (X = 1.0) and the Eckert
number (Ec = 3.0). The observation for entropy generation
indicates that there is a close relationship between entropy
generation profile and velocity profile, i.e., the velocity pro-
file maximum corresponds to the place where the entropy
generation profile attains a minimum value. In addition,
the entropy generation increases with increasing the Pra-
ndtl number for both flow cases as seen in Figs. 7 and 8.
In other words, the maximum entropy generation rate
shifts to each plate as viscous effects becomes more impor-
tant (i.e., as Pr increase). As expected the wall regions act
as strong producers of irreversibility and thus entropy since
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the viscous shear stress on the wall is maximum. The
entropy generation on the lower plate for the case of the
mass suction is higher than that on the upper plate for
the case of mass injection at the same magnitudes of Rey-
nolds number. As can be seen from Fig. 8 the entropy gen-
eration changes to be almost constant by decreasing the
Prandtl number, which corresponds to a constant temper-
ature in the fluid between two plates.

In order to examine the effect of the dimensionless tem-
perature difference (X) on the entropy generation, Fig. 9 is
depicted for the entropy generation as a function of the
dimensionless temperature difference at the constant value
of the Prandtl number (Pr = 9.0) and the Eckert number
(Ec = 3.0) for the plate movement-driven flow. As can be
seen from the figure the entropy generation is slightly
dependent on the dimensionless temperature difference
(X) for both the mass suction and mass injection at
Pr = 9.0 and Ec = 3.0. The maximum entropy generation
occurs on the plates since the maximum irreversibility is
generated on the walls. For the mass suction at the bottom
plate the entropy generation occurring on the lower plate is
higher than that occurring on the upper plate for the mass
injection. It can also be seen from the figure there is the
lowest entropy generation in the fluid depending on the
mass suction/injection at the bottom plate. The trend
observed for the entropy generation as a function of the
X is similar to that observed for the entropy generation
as a function of the Prandtl number.

For the pressure-and-plate movement-driven flow the
entropy generation as a function of dimensionless tempera-
ture difference is sketched in Fig. 10 at the constant values of
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Fig. 9. Effect of the dimensionless temperature difference on th
the pressure drop (P0 = �0.50), the Eckert number
(Ec = 3.0) and the Prandtl number (Pr = 5.0) under only
the mass injection. As can be seen from the figure all profiles
for entropy generation other than that for X = 1.0 are
almost identical. Therefore, it can be said that the effect of
dimensionless temperature on the entropy generation is neg-
ligible. It can also be said that the entropy generation slightly
decreases with increasing dimensionless temperature.

Until this point the influence of effective parameters on
the temperature and the entropy generation profiles is
examined for two values of Reynolds number specifically
the mass suction and the mass injection at the bottom wall.

The entropy generation as a function of the Reynolds
number is drawn in Fig. 11 at the constant values of the
Eckert number (Ec = 8.0), the Prandtl number (Pr = 5.0)
and the dimensionless temperature difference (X = 1.0)
for the fluid that is flowed by the plate movement. As sta-
ted previously, the maximum entropy takes place either at
the upper plate or at the lower plate according to the mass
injection and mass suction. As can be seen from the figure
the entropy generation on the plates increases with increas-
ing the magnitudes of Reynolds number since the irrevers-
ibility due to fluid friction increases with increasing
Reynolds number. In addition, there is a lowest value for
the entropy generation in the fluid for both mass suction
and injection although the location varies according to
the magnitude and sign of Reynolds number. Furthermore,
the largest value for the entropy generation on the lower
plate is obtained for the largest mass suction. On the other
hand, the highest value for the entropy generation on the
upper plate is obtained for the largest mass injection from
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Fig. 11. Effect of the Reynolds number on the entropy generation for the plate movement-driven flow.
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mass injection.
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the bottom plate. Therefore, it can be concluded that an
increase in the momentum transfer from the plates to the
fluid will enhance the entropy generation in boundary layer
since the velocity profile of the fluid between two large
plates moves close to the lower plate by the mass suction
and moves close to the upper plate by the mass injection.
The entropy generation occurring at a location close to
the lower plate is higher than that occurring at a location
close to the upper plate at the large magnitudes of Rey-
nolds number.
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Fig. 12. Effect of the Reynolds number on the entropy generation for the pressure-and-plate movement-driven flow.
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For the pressure-and-plate movement-driven fluid flow,
the entropy generation as a function of the cross-flow Rey-
nolds number is illustrated in Fig. 12 at the constant values
of the pressure drop (P0 = �0.50), the Eckert number
(Ec = 3.0), the Prandtl number (Pr = 5.0) and the dimen-
sionless temperature difference (X = 1.0). As can be seen
from the figure the entropy generation increases with
increasing amount of the mass suction/injection. The
increase of the entropy generation for the case of mass suc-
tion is more pronounced than that for the case of mass
injection with increasing magnitudes of Reynolds number
when other parameters are kept constant at the same
values.

As a result, the trend observed here for the entropy gen-
eration as functions of the Prandtl number, the Eckert
number, the dimensionless temperature difference and the
cross-flow Reynolds number is similar to that observed
by Bejan [9], Sahin [13] and Mahmud and Fraser [14] for
the entropy generation of a Newtonian fluid flow in various
cross-sectional geometries.

The observations made in the present study can be
extended to the flow past moving vehicles, pylons of
bridges and buildings. Fransson et al. [23] reported that
suction delays separation contributing to a narrower wake
width, and a corresponding reduction of drag force,
whereas blowing indicates the opposite behavior. In other
words, the drag force on the body decreases drastically
with increasing suction rate. Furthermore, porous walls
have been used in many instruments such as compact dif-
fusers, fuel cells, some of heat exchangers, wind tunnels,
combustion chambers etc. For instance, a porous-wall
compact diffuser can be designed for chemical layer appli-
cations and by improving the earliest ventilated wind tun-
nels porous walls have been started to use in such
instruments. Therefore, the present study can be extended
to examine entropy generations in those instruments.

5. Conclusion

The second law analysis of laminar viscous flow of the
fluid in a thin horizontal slit whose plates at different tem-
peratures has been performed to determine the dimension-
less temperature and total entropy generation distributions
as functions of the Prandtl number, the Eckert number, the
dimensionless temperature difference for the cases of mass
suction and injection. The temperature and entropy gener-
ation profiles have been interpreted in terms of the effective
parameters such as Pr, Ec, X and Re. It is concluded that
the plates becomes close to adiabatic wall with increasing
Prandtl number at Ec = 0. Furthermore, it is observed that
for the case of mass injection from bottom plate, the pres-
sure-and-plate movement-driven flow will reduce heat
transfer at the bottom wall and enhance heat transfer at
the upper plate more than the plate movement-driven flow.
The slit wall regions act as strong irreversibility producers
since viscous shear stress near the wall attains its maximum
value. It is also observed that the temperature profile of the
fluid as a function of the Eckert number for the cases of
mass suction and injection are substantially different from
one another at the same magnitude of the other effective
parameters. The magnitudes of mass suction and injection
have a large influence on the temperature profile of the
fluid. It is also observed that Prandtl number and Eckert
number affect the fluid temperature in the similar way.
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The maximum entropy generation rate shifts to each plate
as viscous effects becomes more important since the wall
regions act as strong irreversibility producers due to more
fluid frictions in wall regions. It is found that an increase
in values of the cross-flow Reynolds number (mass suc-
tion/injection) enhances the entropy generation in bound-
ary layer since the velocity profile of the fluid between
two large plates moves close to the lower plate for the mass
suction and moves close to the upper plate for the mass
injection. The entropy generation is slightly dependent on
the dimensionless temperature difference (X) for both the
mass suction and mass injection at certain values of Pr

and Ec.
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